
www.manaraa.com

A Middleware Architecture for Securing
Ubiquitous Computing Cyber Infrastructures

Raquel Hill, Jalal Al-Muhtadi, Roy Campbell, Apu Kapadia, Prasad Naldurg, Anand Ranganathan

Department of Computer Science, University of Illinois, Urbana-Champaign
(rlhill@uiuc.edu, almuhtad@cs.uiuc.edu , rhc@uiuc.edu, akapadia@uiuc.edu, naldurg@cs.uiuc.edu,

ranganat@students.uiuc.edu)

Abstract
Ubiquitous computing is revolutionizing the way applications, users, resources, and physical spaces

interact. In this paper we address securing cyber infrastructures for ubiquitous computing environments,
like smart buildings and campuses. Our emphasis here is to construct a middleware-based critical cyber
infrastructure (CCI) that encompasses heterogeneous components and binds networks, processors, and
devices with mechanisms, protocols and services to offer reliable, fault-tolerant, available, and secure
operations. Existing CCI implementations create statically configured, confined networked subsystems,
which are isolated from the public Internet, and are context insensitive. This leads to multiple subsystems
that are incompatible and incapable of interoperating, thus making operations, management, and trust
difficult.

In this paper, we propose Hestia: Heterogeneous Survivable Trusted Information-assurance
Architecture and describe how it addresses the problem of securing critical information services in large-
scale ubiquitous computing environments. Hestia is a novel programmable middleware solution,
implemented as a network of Middleboxes. These Middleboxes form protective layers that isolate critical
cyber-infrastructure services and mediate authorized access to the services in our system. The Middleboxes
provide a programmable distributed object-oriented framework that enables us to integrate security,
privacy, and reliability mechanisms into service access interfaces and implementations.

1. Introduction
Ubiquitous computing allows the coupling of the physical world to the information world. Ubiquitous

environments organize networked computer devices into a distributed system that cooperates and
coordinates its activities with its users. We envision that ubiquitous computing will soon extend beyond
the boundaries of “prototype” experiments and encompass larger areas, enabling smart building, smart
campuses, and smart fleets [1]. However, security,
privacy, and fault-tolerance are the major hurdles for
real-life deployment of the technology on a wide-scale.

Users of today’s computing and information
systems expect these systems to be available even when
under attack, to perform their tasks in a timely manner,
and to provide accurate results consistently. The
problem of securing critical cyber infrastructure (CCI)
is exaggerated by smart buildings that must bind
networks, processors and devices with policies,
mechanisms, protocols and services to offer survivable
and secure operations, while providing better
management and finer integration between the
heterogeneous components. Moreover, a secure critical
infrastructure for smart buildings is essential, because
many of the services that a building provide is critical
to supporting its inhabitants, including surveillance
systems, HVAC, lights, door locks, etc.

Many of the issues we highlight and address in this
paper are motivated by real-world security, privacy and
survivability challenges that we face in the new Siebel

Figure 1: Hestia Overview

www.manaraa.com

Center for Computer Science. The Siebel Center is a “smart building,” and showcases state-of-the-art
computing and communications infrastructure in its offices, meeting rooms and classrooms. Digital locks,
heating, cooling, and lighting controllers, video cameras and other digital sensors and actuators are
deployed throughout the building, and will be accessible via a private network. Faculty, students and
visitors to our building need reliable access to computing, communication, and information services that
they are authorized to use. The building also needs to be secure against accidental software or hardware
failures or malicious attacks. Since the Siebel Center is an open academic environment, draconian access
controls are not feasible; however, the security and survivability of the critical infrastructure within the
building is a key consideration. In addition, the heterogeneous components and subsystems of the building
need to be integrated to enable a greater level of interoperability.

We propose Hestia a middleware for providing a secure layer for critical cyber infrastructures, like
smart buildings and other large-scale ubiquitous computing environments. Hestia partitions the network
into two trust domains: an application-domain network for clients, and a protected network consisting of
Middleboxes and heterogeneous services. This partitioning is enforced at the perimeter of the Hestia layer
using network-level firewalls or NAT boxes. A Middlebox is a node that contains some instantiation of
security, privacy and/or load balancing mechanisms. The Middleboxes network, as shown in Figure 2, acts
as a cluster of reconfigurable computing and communication nodes. The Middleboxes provide a
programmable distributed-object interface that enables service owners and administrators of our system to
exercise fine-grained control over network service usage, deployment, management, and control. They also
provide appropriate filtering mechanisms to enforce customizable anonymity, confidentiality and privacy
concerns. The service-domain includes a set of networked services and proxies encapsulated by routers
and firewalls and an application-domain network. In the application-domain, building services are exposed
by the Hestia discovery protocol as application service interfaces of Middlebox proxies that are mapped
across routers and firewalls. This novel distributed-object framework uses a network of “Middleboxes” to
integrate security, privacy and reliability concerns into the service domain. The Hestia service-domain
supports service composition, survivability, distributed trust management and control. The system offers
distributed deployment of mechanisms, such as access controls, anonymity, replication, load balancing,
auditing, and intrusion detection.

In the following sections, we define the Hestia middleware architecture, and summarize the
contributions of a Hestia-enabled security infrastructure. We explain our architecture in more detail with
the help of an example. We examine the task of controlling access using swipe-cards to different parts of
our smart building that relies on a networked Lock-server. All doors in our building are augmented with e-

Figure 2: Hestia Middleware

www.manaraa.com

locks that open to authenticated users who are authorized by the policies. The swipe-card detector sends a
message over the network that causes a lookup in a door-lock access database associated with the Lock-
server. If the user is authorized, the door opens in response to a reply-message from this server. We wish to
extend this mechanism to provide additional services. For example, to assist people with disabilities, we
offer them UbiSense location technology [2]. UbiSense employs special tags that transmit ultra-wide radio
bands. The tags can be associated with a particular user. Tag-detectors can detect the presence and location
of a user within six inches within the building. Some services can be programmed to use the UbiSense
system to identify and authorize disabled users waiting to enter a door and open the door through the door-
lock mechanisms.

The door-lock server is an important CCI service in this context. It is also a single-point of failure, and
can be the target of various attacks. Since all messages are sent in plaintext, the Hestia layer can provide
the required encryption support to protect the confidentiality of the information exchanged and preserve the
privacy of individuals. In addition, access to the door-lock service itself has to be fault-tolerant and the
system should be able to balance the load dynamically when requests become a bottleneck to server access.
No client in the system should know where the server is located to prevent DoS attacks.

2. Architecture
Our architecture is divided into a service domain and an application domain. The service domain

provides users and services with a set of mechanisms for fault tolerance, quality of service, and privacy
through a network of Middleboxes. Because a smart building environment is dynamic and context-aware, it
must capture and act upon many factors, like context information, role hierarchies, security policies,
building plans, risk factors, and service dependencies. Managing all these factors individually is difficult.
Therefore, the service domain contains a Knowledge Base and an Inference Engine. The Knowledge-base
is a repository for the context information, role hierarchies, security policies, etc. The Inference Engine
uses the information in the Knowledge Base and composes requirements and mechanisms for satisfying
these requirements, generates service graphs and applies the necessary policy decisions (access control,
privacy, etc) to the service graphs. Additionally, the Inference Engine must generate auditing mechanisms
for the service and intrusion detection monitoring for detecting malicious activity. Figure 2 illustrates how
user and service policies are used in Hestia to derive the appropriate security mechanisms.

 Hestia makes extensive use of Role Based Access Control (RBAC). Access to resources will
typically be granted based on the user’s role along with contextual information. The Inference Engine also
contains a secure feedback component. When a user is denied access to a resource, the user must be
provided with useful feedback on how access can be gained (e.g., should the user come back at a later time,
or should the user obtain additional credentials?). However, unconstrained feedback may reveal too much
information about the system’s policies. In [3] we describe Know, a mechanism for providing useful
feedback while honoring the privacy of the system’s policies. Such a component is very important in a
ubiquitous environment where several users interact with a plethora of devices.

The application domain provides users (based on their role, for example) with an abstraction of what
services are available and a set of interfaces to interact with the service domain. The application domain
provides users with discovery and lookup services. Services are accessed through the service domain.
Application domain services (discovery, lookup, etc.) are also subject to security constraints, so that users
will be able to view and access services based on their roles.

For example, the door lock service is accessed through the service domain via a proxy that runs on a
Middlebox. This service will appear in discovery and lookup services in the application domain. After
discovering the location of the doorlock service proxy, users can interact with the proxy in the service
domain. Other services in the Siebel Center will include a location service that tracks users’ movements
while respecting privacy, heating and cooling, sprinkler systems, etc. All these services need suitable
protection mechanisms.

The network of Middleboxes provides mechanisms that include load balancing, fault tolerance,
routing, anonymity, security and quality of service. Each service is provided by a specific layer within our
Middleware. We briefly describe these layers.

2.1 Load Balance Layer (LBL)
This layer distributes service processes among participating Middleboxes in a probabilistic manner.

The main goal of the load balancing service is to ensure that no Middlebox becomes overloaded. The load

www.manaraa.com

balancer is given a resource requirement profile for each service that is to be hosted. This information
should include CPU, disk space, and bandwidth requirements. At this layer, process migration occurs when
the load of the Middleboxes needs to be redistributed. Migration of services will need to be done securely.
For example a service like Kerberos that stores private keys may require a secure transfer to another
Middlebox. Furthermore, access to migrated proxies can be maintained for connected users though a
mobile-IP approach. Messages to the previous “home” of the proxy are forwarded to the new home.

Addressing: When a service is to be hosted by a Middlebox, the load balancer is given a pseudonym
for the service. It then creates an object reference for the service. After creating the object reference, the
load balancer registers the object reference and the pseudonym with the Name Space. To resolve a service,
an end-user presents the pseudonym to the Name Server and is returned the corresponding object reference
or handle.

Denial of Service protection: Through distribution of load, the Middleboxes are able to handle larger
aggregate loads, thus increasing DoS resilience of the network. Additionally, services can specify usage
constraints as part of their requirements. This layer maintains the aggregate load for proxies of a service
and keeps it within the maximum allowable load, thereby preventing DoS attacks on the actual service.

For example, since the doorlock service is used heavily within a building, its proxies may attract a
considerable amount of load. The LBL layer, in such cases, could migrate proxies to ensure that no
Middlebox is overloaded. Furthermore, if users try to overload the service by making repeated requests for
access, the load balancing layer will ensure that the aggregate request bandwidth to the doorlock database is
kept within acceptable thresholds.

2.2 Fault Tolerance Layer (FTL)
While Hestia may provide basic fault tolerance for services (through replication for example), this

layer maintains availability of services by replicating the proxies for a service. If proxies are attacked (e.g.,
DoS), then new proxies for the service can be instantiated on the Middleboxes. Hence this layer provides
fault tolerance through availability of services through proxies. Services are deployed along with
replication requirements for their proxies. Proxies can be replicated for quick recovery using active or
passive replication mechanisms. With active replication, the replica is maintained in the same state as the
original proxy. Passive replication uses periodic checkpointing of consistent states. For example, the
doorlock service can deploy several proxies through the LBL. This ensures that the doorlock service can be
accessed through several proxies, increasing its availability and fault tolerance. If a proxy fails, its active
(or passive) replica can be used as a substitute. Fault tolerance service may require a more sophisticated
fault-tolerant Middlebox access schemes.

2.3 Anonymity Layer (AL)
This layer obfuscates the identity and/or location of the client, the Middleboxes, or both. Onion

Routing [4], Crowds [5] and Mist [6] routing concepts at this layer provide anonymity.
We provide a solution based on Mist, where users or services establish routes through Middleboxes

while keeping their locations private. Handles that maintain forward and reverse paths for packets establish
a route though Middleboxes. Each router only knows the previous and next hops. These routes eventually
end at some Middlebox, which serves as a point of communication for the entity. In Mist, this Middlebox is
called the Lighthouse for that entity. Traffic for that entity is directed to its Lighthouse, which then
forwards the data down the established path. Since communication takes place through Lighthouses, the
actual location of an entity is not revealed. Hence this decouples a user’s identity from its location, giving
the user location privacy or location anonymity. Users can optionally choose to not reveal their identities,
thereby achieving location and identity anonymity. This layer provides anonymity services for users and
services.

• Anonymity for Users: Since users must constantly interact with services in ubiquitous computing
environments, it becomes feasible for the system to track a user’s movements. For example, the
administrator of a service can mine service logs and infer the location of users. Providing anonymity
to users ensures that their locations are kept secret while allowing them to interact with services
through their Lighthouses.

• Anonymity for Services: While critical services may be deployed through Middleboxes, we would
like to keep the location of these services private. This would prevent malicious parties and even
insiders from identifying the specific machines on which they can mount attacks. Such attacks could
cripple the targeted service. Hence the anonymizing layer of the Middleboxes provides this

www.manaraa.com

functionality. For example, the ubiquitous environment might store a plethora of information
pertaining to users. This includes personal data, as well as usage statistics of users. Storage of such
data is a source of threat to a user’s privacy. Data storage can also be anonymized by storing the data
in undisclosed locations. While data are accessible though the service’s Lighthouse, its location is
not known. This prevents malicious parties from denying access to data, since they do not know
which machines they can mount attacks on. Furthermore, the data can be replicated to increase its
availability, and resilience to denial of service attacks. This can be accomplished by the Fault
Tolerance layer.

Continuing with our example, the location of the doorlock service may be kept secret through this
layer. This is important since the doorlock service is crucial to the operation of a building, and exposing its
location would make it vulnerable to attackers.

2.4 Quality Layer (QL)
This layer provides users with an interface for specifying the level of quality that they would like to

receive. Quality may be specified with regard to data transmission metrics or quality of service (QoS) (e.g.
delay, bandwidth or packet loss rates). Quality may also be specified with regard to the level of security or
quality of Protection (QoP) that a client requires, in terms of confidentiality, integrity, anonymity, etc. For
example, services can request higher grade encryption and authentication for users connecting with the
service. Users may also request routes from the QoS layer with QoP requirements such as bandwidth
distribution that is immune to traffic analysis. The doorlock service, for example, may demand a certain
level of authentication (QoP) for access to the locks. It may also request QoS parameters such as low
latency for quick response times.

2.5 Secure Services Layer (SL)
This layer uses Middleboxes to provide access control, confidentiality, and integrity for services.

Services can upload access policies into the SL, which can then be combined with the system policies to
control access to the services. The doorlock service may request the use of encryption and signatures to
ensure the privacy and integrity of messages to the service.

Functionally, the Middlebox-network in Figure 2 acts as a cluster of reconfigurable computing and
communication nodes. Clients can only access services in our system via the Hestia layer. Servers create
and install proxies on the Middlebox network either proactively or reactively in response to requests from
clients. These proxies provide a restricted view of service interfaces, corresponding to the authorizations of
the requesting clients, and may actually implement the server’s logic and perform computation and serve
data, thereby offloading the server’s computation dynamically. The proxies also act as filters to provably
enforce confidentiality and privacy concerns. In addition, these proxies can be replicated for load balancing
and fault-tolerance, or form a customized network among themselves to provide QoS or VPN-style routing.
The instantiation of proxy objects on Middleboxes is driven by the policy specifications, and different
functional and non-functional requirements can be composed to create customized service objects on-
demand. By defining the interfaces and rules for composition correctly, different protocols and functions
can be composed on top of each other using standard object composition techniques to provide
differentiated services.

The proxy objects in our architecture are not persistent and maintain little global state information.
Ideally we should be able to migrate and restart proxies on any Middlebox in our network with little
overhead. To accomplish this, the proxies are carefully designed to implement soft-state protocols. Even
when a proxy is attacked and compromised, the damage is contained, and a new proxy can be restarted on a
different Middlebox with little effort. Proxies have little knowledge of other services and systems. This
aspect of our design allows us to build truly survivable network services that can continue to provide
service guarantees and degrade gracefully under attack, on top of the existing best-effort network service
model.

3. Implementation
We are implementing the network of middleboxes as an overlay network over TCP/IP. We choose

Prolog to act as a simple inference engine. We use CORBA [7] as the major backbone for communication
in our distributed system. CORBA offers several services that are instrumental in implementing some of
the needed functionality, including the support for atomic transaction, persistent objects, and platform

www.manaraa.com

independence. Many CORBA implementations are heavyweight and may not be appropriate for
implementing an overlay network. Therefore, we are experimenting with the Universally Interoperable
Core (UIC), which provides a lightweight, high-performance implementation of CORBA �[8]. Every layer
in our architecture has a broker that provides a CORBA IDL interface that allows services and users to
access the functionality provided by that layer. To demonstrate the system, we are in the process of
developing several services for controlling different functionality in the smart building including
locking/unlocking of doors, controlling lights, configuring HVAC systems, as well as other applications
that utilize the smart building environment as a whole, like services that unlock doors and turn on lights
automatically for disabled people as they move in the environment.

4. Related Work
Several middleware platforms for distributed programming introduce meta-programming extensions

that provide functionality that is similar to Middleboxes. CORBA provides portable interceptors [9], which
allow developers to extend and control the behavior of the ORB. However, interceptors have limited
capabilities, and can only reside on the client or server sides, whereas Middleboxes are envisioned to run on
intermediate machines. Java RMI [10] introduced RMI stubs for distributed objects. The stub is a remote
reference to a distributed object in which all method calls are merely forwarded to the target object. JINI
[11] and some CORBA implementations, like TAO [12], support “smart proxies.” A smart proxy is similar
to a stub, but can provide additional features like results caching, failover, and custom protocols to
communicate back to the target object. Microsoft .NET Remoting [13] supports a construct similar to
smart proxy (RealProxy and TransparentProxy). Middleboxes provide functionality that is similar to smart
proxies. However, unlike typical smart proxy frameworks, where a single proxy is created per client, Hestia
supports many-to-many relationships between clients and Middleboxes on one hand and between services
and MiddleBoxes on another. For example, a Middlebox can choose to forward a client’s request to one of
many active services in order to achieve load balancing. For fault tolerance, Hestia supports the dynamic
creation of Middleboxes on the fly, as well as dynamic bindings between Middleboxes and services as they
become available. Furthermore, several mediators may be needed to provide sufficient services. For
example, anonymity may require communication channels to traverse several Middleboxes in sequence to
provide a better level of concealment.

5. Conclusion
We believe that Hestia will open new frontiers in the design, development and deployment of trusted

CCI for buildings. The unique Middlebox architecture provides a programmable distributed object-oriented
framework that is inherently survivable. It enables us to integrate security, privacy, and reliability
mechanisms into service access interfaces and implementations. Hestia will allow services to not just
execute, but execute with desired security, availability, quality of service and load-balancing properties.

Our proposed research will have a significant impact on the adoption of CCI by buildings as diverse as
hospitals, airports, offices, laboratories and power plants. It will demonstrate that smart building services
can be deployed without compromising privacy or critical safety, security and survivability properties. It
will encourage new industries for applications that exploit smart buildings: ubiquitous services for users
with disabilities; safety and rescue operations; sophisticated anti-theft approaches; building guide and
navigational services; personal safety; communication, collaboration, education services; people control as
in airport personnel management/restricted area access control subsystems, and passenger information
subsystems.

6. References
[1] J. Al-Muhtadi, S. Chetan, and A. Ranganathan, "Super Spaces: A Middleware for Large-Scale

Pervasive Computing Environments," presented at Middleware Support for Pervasive Computing
Workshop, in conjunction with PerCom, Orlando, FL, 2004.

[2] UbiSense, "Local position system and sentient computing." http://www.ubisense.net/.
[3] A. Kapadia, G. Sampemane, and R. H. Campbell, "Know Why Your Access Was Denied:

Regulating Feedback for Usable Security," Technical Report: UIUCDCS-R-2004-2406/UILU-
ENG-2004-1708, 2004.

www.manaraa.com

[4] M. Reed, P. Syverson, and D. Goldschlag, "Anonymous Connections and Onion Routing," IEEE
Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy Protection,
1998.

[5] M. Reiter and A. D. Rubin, "Crowds: Anonymity for Web Transactions," ACM Transactions on
Information and System Security (TISSEC), vol. 1, 1998.

[6] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas, and S. Yi, "Routing Through the Mist:
Privacy Preserving Communication in Ubiquitous Computing Environments," presented at
International Conference of Distributed Computing Systems (ICDCS 2002), Vienna, Austria,
2002.

[7] OMG, "CORBA, Architecture and Specification," Common Object Request Broker Architecture
(CORBA) 1998.

[8] M. Roman, F. Kon, and R. H. Campbell, "Reflective Middleware: From Your Desktop to Your
Hand," IEEE Distributed Systems Online. Special Issue on Reflective Middleware, 2001.

[9] OMG, "CORBA 3.0.3 Specification, formal/2004-03-01." available at http://www.omg.org/cgi-
bin/doc?formal/04-03-01, 2004.

[10] Sun Microsystems Inc., "Java Remote Method Invocation (Java RMI)." available at
http://java.sun.com/products/jdk/rmi/.

[11] J.Waldo, "The Jini architecture for network-centric computing," Communications of the ACM, vol.
42, pp. 76–82, 1999.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee, "The Design and Performance of Real-Time Object
Request Brokers," Computer Communications, vol. 21, pp. 294-324, 1998.

[13] Microsoft Corporation, "Microsoft .NET Remoting: A Technical Overview." available at
http://msdn.microsoft.com/library/.

